A Non-commutativity Statement for Algebraic Quaternions

نویسندگان

  • Flavio D'Alessandro
  • Alessandro D'Andrea
چکیده

In this paper we provide a constructive version of Tits alternative for a broad class of quaternions with algebraic coefficients. Our result is a generalization of that contained in the paper [1], concerning groups of rational quaternions. Indeed, the tools developed in [1] can be extended to arbitrary number fields by translating them in the corresponding Dedekind domain, as the techniques involved are of a typical “factorization and divisibility” flavour. Let K be a finite extension of Q. We will say that a quaternion a+ bi+ cj + dk is K-rational if its coefficients a, b, c, d all lie in K. The main result in the paper is then the following.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Space and time from translation symmetry

We show that the notions of space and time in algebraic quantum field theory arise from translation symmetry if we assume asymptotic commutativity. We argue that this construction can be applied to string theory. The goal of the present paper is to understand better the foundations of string theory. I will start with the question ”What is quantum field theory?” I hope to explain that in quantum...

متن کامل

The Principle of Relativity: From Ungar’s Gyrolanguage for Physics to Weaving Computation in Mathematics

‎This paper extends the scope of algebraic computation based on a non standard $times$ to ‎the more basic case of a non standard $+$‎, ‎where standard means associative ‎and commutative‎. ‎Two physically meaningful examples of a non standard $+$ are ‎provided by the observation of motion in Special Relativity‎, ‎from either ‎outside (3D) or inside (2D or more)‎, ‎We revisit the ``gyro''-theory ...

متن کامل

On Infinite Groups Generated by Two Quaternions

Let x, y be two integer quaternions of norm p and l, respectively, where p, l are distinct odd prime numbers. What can be said about the structure of 〈x, y〉, the multiplicative group generated by x and y ? Under a certain condition which excludes 〈x, y〉 from being free or abelian, we show for example that 〈x, y〉, its center, commutator subgroup and abelianization are finitely presented infinite...

متن کامل

A COMMUTATIVITY CONDITION FOR RINGS

In this paper, we use the structure theory to prove an analog to a well-known theorem of Herstein as follows: Let R be a ring with center C such that for all x,y ? R either [x,y]= 0 or x-x [x,y]? C for some non negative integer n= n(x,y) dependingon x and y. Then R is commutative.

متن کامل

Finite groups with three relative commutativity degrees

‎‎For a finite group $G$ and a subgroup $H$ of $G$‎, ‎the relative commutativity degree of $H$ in $G$‎, ‎denoted by $d(H,G)$‎, ‎is the probability that an element of $H$ commutes with an element of $G$‎. ‎Let $mathcal{D}(G)={d(H,G):Hleq G}$ be the set of all relative commutativity degrees of subgroups of $G$‎. ‎It is shown that a finite group $G$ admits three relative commutativity degrees if a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IJAC

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2006