A Non-commutativity Statement for Algebraic Quaternions
نویسندگان
چکیده
In this paper we provide a constructive version of Tits alternative for a broad class of quaternions with algebraic coefficients. Our result is a generalization of that contained in the paper [1], concerning groups of rational quaternions. Indeed, the tools developed in [1] can be extended to arbitrary number fields by translating them in the corresponding Dedekind domain, as the techniques involved are of a typical “factorization and divisibility” flavour. Let K be a finite extension of Q. We will say that a quaternion a+ bi+ cj + dk is K-rational if its coefficients a, b, c, d all lie in K. The main result in the paper is then the following.
منابع مشابه
Space and time from translation symmetry
We show that the notions of space and time in algebraic quantum field theory arise from translation symmetry if we assume asymptotic commutativity. We argue that this construction can be applied to string theory. The goal of the present paper is to understand better the foundations of string theory. I will start with the question ”What is quantum field theory?” I hope to explain that in quantum...
متن کاملThe Principle of Relativity: From Ungar’s Gyrolanguage for Physics to Weaving Computation in Mathematics
This paper extends the scope of algebraic computation based on a non standard $times$ to the more basic case of a non standard $+$, where standard means associative and commutative. Two physically meaningful examples of a non standard $+$ are provided by the observation of motion in Special Relativity, from either outside (3D) or inside (2D or more), We revisit the ``gyro''-theory ...
متن کاملOn Infinite Groups Generated by Two Quaternions
Let x, y be two integer quaternions of norm p and l, respectively, where p, l are distinct odd prime numbers. What can be said about the structure of 〈x, y〉, the multiplicative group generated by x and y ? Under a certain condition which excludes 〈x, y〉 from being free or abelian, we show for example that 〈x, y〉, its center, commutator subgroup and abelianization are finitely presented infinite...
متن کاملA COMMUTATIVITY CONDITION FOR RINGS
In this paper, we use the structure theory to prove an analog to a well-known theorem of Herstein as follows: Let R be a ring with center C such that for all x,y ? R either [x,y]= 0 or x-x [x,y]? C for some non negative integer n= n(x,y) dependingon x and y. Then R is commutative.
متن کاملFinite groups with three relative commutativity degrees
For a finite group $G$ and a subgroup $H$ of $G$, the relative commutativity degree of $H$ in $G$, denoted by $d(H,G)$, is the probability that an element of $H$ commutes with an element of $G$. Let $mathcal{D}(G)={d(H,G):Hleq G}$ be the set of all relative commutativity degrees of subgroups of $G$. It is shown that a finite group $G$ admits three relative commutativity degrees if a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJAC
دوره 16 شماره
صفحات -
تاریخ انتشار 2006